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Abstract
In this article, we review some of the most provocative experimental
results to have emerged from comparative labs in the past few years,
starting with research focusing on contingency learning and finish-
ing with experiments exploring nonhuman animals’ understanding
of causal-logical relations. Although the theoretical explanation for
these results is often inchoate, a clear pattern nevertheless emerges.
The comparative evidence does not fit comfortably into either the
traditional associationist or inferential alternatives that have domi-
nated comparative debate for many decades now. Indeed, the simi-
larities and differences between human and nonhuman causal cog-
nition seem to be much more multifarious than these dichotomous
alternatives allow.
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INTRODUCTION

Animals of all taxa have evolved cognitive
mechanisms for taking advantage of causal
regularities in the physical world. Many are
also quite adept at using and manufacturing
simple tools. But the way that human sub-
jects cognize causal regularities is clearly a
good deal more sophisticated than that of any
other animal on the planet. This much, at

least, seems indisputable. Which specific cog-
nitive mechanisms human beings share with
other animals, however, and which—if any—
are uniquely human is an age-old question
that is still very much unresolved (see, for ex-
ample, Castro & Wasserman 2005, Chappell
2006, Clayton & Dickinson 2006, Reboul
2005, Vonk & Povinelli 2006).

In our opinion, substantive progress on
this fundamental question has been greatly
hindered by the dichotomous debate between
“associationist” and “inferential” theories of
causal cognition that has dominated compar-
ative research for many decades and still holds
sway in some parts of town (see Shanks 2006
for a review). Associationists have long argued
that all of nonhuman causal cognition and
most of human causal cognition as well can
be reduced to a kind of contingency learning
based on stimulus-bound, associative mech-
anisms similar to those that govern Pavlo-
vian conditioning (for reviews, see Dickinson
2001, Pearce & Bouton 2001, Shanks 1995,
Wasserman & Miller 1997). More generous
comparative researchers, on the other hand,
claim that even nonhuman animals are capa-
ble of reasoning about “causal-logical” rela-
tions in a human-like fashion (Call 2004) and
employ “controlled and effortful inferential
reasoning processes” to do so (Beckers et al.
2006).

In this article, we review some of the
most provocative experimental results to have
emerged from comparative labs in recent
years. We start with experiments focusing
on contingency learning and finish with
research that explores nonhuman animals’
understanding of unobservable causal mech-
anisms and causal-logical relations. The the-
oretical explanation for these provocative re-
sults is often inchoate at best. Nevertheless, a
clear pattern emerges. The available compar-
ative evidence does not fit comfortably into
either the traditional associationist or classi-
cally inferential alternatives. Indeed, the sim-
ilarities and differences between human and
nonhuman causal cognition seem to be much
more multifarious and fascinating than these
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dichotomous alternatives allow (for similar
suggestions, see Chappell 2006, Clayton &
Dickinson 2006, Gallistel 2003, Heyes &
Papineau 2005, Povinelli 2000, Shettleworth
1998).

LEARNING ASSOCIATIONS

Retrospective Revaluation Effects

We begin our bottom-up review of the recent
comparative literature on causal cognition
with a phenomenon that has challenged asso-
ciationist theory from within. “Retrospective
revaluation” is an umbrella term that associa-
tionist researchers use to refer to contingency
learning scenarios in which the associative
strength between a conditioned stimulus (CS)
and an unconditioned stimulus (US) changes
even though the CS in question is absent on
the relevant training episodes. The paradig-
matic example of a retrospective revaluation
effect is backward blocking.

In the case of forward blocking, a cue is first
paired with a US (e.g., A+) and then the first
cue is presented in compound with a target cue
and the US (e.g., AX+). Kamin (1969) showed
that rats presented with A+ and then AX+ tri-
als subsequently exhibited a weaker response
to X than did rats who were only exposed to
AX+ trials—as if learning that the reward was
contingent on A “blocked” the rats from sub-
sequently learning that the reward might also
be contingent on X. The venerable Rescorla-
Wagner (1972) model of associative learn-
ing was developed, in large part, to account
for cue competition effects such as forward
blocking.

In the case of backward blocking, the com-
pound cue is trained first (AX+) and then
the competing cue is presented alone (A+).
As in forward blocking, the response to X
alone is “blocked” on subsequent trials. This
time, however, the blocking effect has oc-
curred even though the X stimulus was absent
on the critical A+ trials. There is compelling
evidence for a variety of retrospective reval-
uation effects in nonhuman as well as human
subjects (e.g., Balleine et al. 2005, Blaisdell &

Within-compound
associations:
associations formed
between cues that
occur in close
physical and/or
temporal proximity
as distinct from
associations that
form between cues
and outcomes

Miller 2001, Denniston et al. 2003, Dickinson
& Burke 1996, Miller & Matute 1996, Shanks
1985, Shevill & Hall 2004, Wasserman &
Berglan 1998, Wasserman & Castro 2005).

Theoretical Accounts of
Retrospective Revaluation Effects

Traditional associationist theories, such as
the Rescorla-Wagner model, cannot account
for retrospective revaluation effects because
they assume that only cues present on a
given trial can undergo a change in their
response-eliciting potential (see discussions
in Dickinson 2001, Shanks 2006, Wasserman
& Castro 2005). Thus, there have been
numerous attempts to revise associationist
models in order to account for retrospec-
tive revaluation effects (e.g., Chapman 1991,
Dickinson & Burke 1996, Van Hamme &
Wasserman 1994). These revised associa-
tionist models postulate that subjects form
within-compound associations between CSs
that have occurred together in addition to as-
sociations between a CS and a US.

One common characteristic of these re-
vised models is that the associative strength
of an absent CS can be updated only if it has
previously been associated with a CS that is
actually present on the given trial. Recently,
however, researchers have shown that the con-
ditioned response to a US is also sensitive to
the relation between stimuli that have never
actually co-occurred but are only indirectly
linked to each other through a web of interme-
diary associations (e.g., De Houwer & Beckers
2002a,b; Denniston et al. 2001, 2003; Macho
& Burkart 2002). For example, Denniston
et al. (2003) presented rats with AX+ trials and
then with XY+ trials. Rats who subsequently
received A- extinction trials responded less
strongly to the Y cue than did rats who re-
ceived no such extinction trials even though
the A and Y stimuli never occurred together.
As Wasserman & Castro (2005) point out,
none of the revised associative models is able
to account for higher-order effects such as
these since the relevant cues never actually
occurred together.
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To inferentially minded researchers,
higher-order retrospective revaluation looks
like it requires “higher-order reasoning
processes” and “conscious propositional
knowledge” (De Houwer et al. 2005). Ac-
cording to an inferential account, after the A-
extinction trials, the rats in Denniston et al.’s
(2003) experiment learned that A was not the
true cause. Given this “propositional knowl-
edge,” the rats deduced that X, not A, was the
actual causal stimulus in the AX+ pairing and
then, by further deductive inference, that Y
must not have been the true causal stimulus
in the XY+ pairing (De Houwer et al. 2005).

A higher-order reasoning account of ret-
rospective revaluation certainly provides one
possible explanation for the rats’ behavior and
has undeniable appeal from a folk psycholog-
ical point of view. However, it is not the only
possible explanation. Denniston et al. (2001),
for example, propose an alternative hypoth-
esis that does not require propositional rep-
resentations or inferential reasoning (see also
Blaisdell et al. 1998; Denniston et al. 2003;
Stout & Miller, manuscript submitted).

According to this “extended comparator
hypothesis,” the response to a given CS results
from a comparison between the representa-
tion of the US directly activated by the target
CS and the representation of the US indirectly
activated by other CSs with which the target
CS has been directly or indirectly associated
in the past. For example, in Denniston et al.’s
(2003) experiment, the extended comparator
hypothesis suggests that the rats’ response to
Y was modulated by the second-order associa-
tion between Y and A as well as the first-order
associations between Y and X and between X
and A (see Denniston et al. 2001 for a detailed
exposition).

The extended comparator hypothesis is
based firmly on traditional associative princi-
ples like spatio-temporal contiguity and “se-
mantically transparent associations” (Fodor
2003, cited by Shanks 2006). However, con-
trary to traditional associationist theories, the
comparator hypothesis posits that cues do not

compete for associative strength when they
are learned; rather, they compete for control
over the subject’s behavior when they are eval-
uated. Indeed, colloquially speaking, the ex-
tended comparator hypothesis proposes that a
subject’s response to a target cue is diminished
by the extent to which it is able to “think” of
an alternative cause or predictor of the out-
come in question (Stout & Miller, manuscript
submitted). In short, in order to explain the
effects of higher-order retrospective revalu-
ation, the extended comparator hypothesis
posits the kind of performance-focused, struc-
tured information-processing capabilities that
associationists have traditionally eschewed.

The Debate Between Associationist
and Inferential Accounts

Which hypothesis best explains higher-order
retrospective revaluation effects in human and
nonhuman animals is a matter of vigorous de-
bate (Aitken & Dickinson 2005; Beckers et al.
2005; De Houwer et al. 2005; Denniston et al.
2003; Melchers et al. 2004; Wasserman &
Castro 2005). Unfortunately, only the asso-
ciative side of the dispute has provided a for-
mal specification of its claims. Van Overwalle
& Timmermans (2001), for example, have
proposed a connectionist implementation of
Dickinson & Burke’s (1996) model of first-
order retrospective revaluation. And Stout &
Miller (manuscript submitted) have submitted
a formal computational specification of the ex-
tended comparator hypothesis. Higher-order
reasoning accounts of retrospective revalua-
tion, on the other hand, have only been for-
mulated in a “verbal manner rather than for-
malized mathematically” (De Houwer et al.
2005). As De Houwer et al. (2005) frankly ad-
mit, “The most troubling implication of this
lack of precision is that it becomes difficult to
refute higher-order reasoning accounts.” Ob-
viously, an important future challenge for ad-
vocates of inferential accounts is to provide
a formal, computational specification of their
claims.
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Regardless of which theoretical account
prevails, the existing evidence has already
demonstrated that nonhuman animals are ca-
pable of feats of causal learning once de-
nied them by traditional associationist the-
ory. Even cognitively minded researchers may
need to revise their assessment of nonhu-
man causal cognition upwards. Visalberghi &
Tomasello (1998), for example, once argued
that nonhuman primates are unable to un-
derstand the “web of possibilities” that con-
nects causes and effects. “Associative learn-
ing,” Visalberghi & Tomasello (1998) went
on to explain, “does not involve a web of
possible connections, but only a one-to-one
connection between antecedent and conse-
quent.” Evidence of higher-order retrospec-
tive revaluation in rats demonstrates that at
least some nonhuman animals are, in fact,
sensitive to higher-order associations between
absent cues. And the extended comparator hy-
pothesis demonstrates that the principles of
associative learning can, in fact, be revised
to take this web of possible connections into
account.

ESTIMATING CAUSAL POWER

Ceiling Effects

If an effect, E, always occurs at its maximal
level in a given context, regardless of whether
a particular cause, C, is present or not, it is im-
possible to draw any inferences about whether
the given cause has the power to produce the
effect or not (Cheng 1997, Cheng & Holyoak
1995). The rational response to this state of
affairs is for the subject to remain agnostic
as to the causal power of the candidate cause
in question. A subject interested in evaluating
whether or not C prevents E, however, could
infer that C is indeed noncausal. Ceiling ef-
fects are not symmetrical for generative and
preventive causes (Cheng et al. 2006). It has
now been well established that both human
and nonhuman subjects are sensitive to ceil-
ing effects when learning about contingen-

Causal power: the
probability with
which a candidate
cause, when present,
actually produces or
prevents an effect in
question as distinct
from the frequency
with which the cause
and the effect
happen to co-occur

Preventive cause: a
cause that has the
power to prevent (or
reduce the
probability of) the
occurrence of a given
effect

Outcome
maximality: the
highest previous
level at which a given
outcome has been
experienced by the
subject

Candidate cause:
of all the possible
causes for a given
effect, the one that is
currently being
evaluated by the
subject

Base rate: the rate
at which a given
effect occurs in the
absence of the
candidate cause

Focal set: the set of
events that a subject
selects as relevant for
computing the causal
power of a candidate
cause in a given
context

cies and treat generative and preventive cases
differently (see Cheng 1997 for a detailed
discussion).

Researchers have recently shown that both
human and nonhuman subjects are also sen-
sitive to outcome maximality and additivity
effects (Beckers et al. 2005, 2006; De Houwer
et al. 2002; Lovibond et al. 2003; Vandorpe
et al. 2005). For example, Lovibond et al.
(2003) showed that human subjects exhibit
significantly stronger blocking when the can-
didate causes are described as having an ad-
ditive effect. And Beckers et al. (2006) have
shown that forward blocking in rats is atten-
uated when the intensity of the US presented
during test trials is the same as the maximum
intensity of the US experienced during prior
training trials.

The Power PC Model of “Causal
Power”

The traditional model for computing the sta-
tistical contingency between two cues is the
�P model (Jenkins & Ward 1965, Rescorla
1968),

�P = p(E|C) − p(E | ∼ C ),

where p(E |C) is the probability of observing
the effect given the presence of the candidate
cause, and p(E |∼C) is the probability of ob-
serving the effect in the absence of the candi-
date cause.

The �P model of statistical contingency
does not account for ceiling effects or the
asymmetry between generative and preven-
tive causes. Cheng (1997) showed that the
normative model for estimating the contin-
gency between a cause and an effect must con-
sider the base rate probability of the effect
in the absence of the candidate cause. In the
case of binary causes and effects (i.e., causes
and effects that are either present or absent),
and assuming that the candidate cause is inde-
pendent of any alternative causes in the sub-
ject’s “focal set,” Cheng’s model for generative
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Outcome
additivity: a
characteristic of cues
that produce a
greater intensity
outcome when
combined with other
additive cues than
when presented
alone

causes is given by

q = �P
1 − p(E | ∼ C)

,

where �P is the standard model of statisti-
cal contingency described above, p(E | ∼ C) is
the probability of observing the effect in the
absence of the candidate cause, and q is an es-
timate of the unobservable “causal power” of
the candidate cause in question.

In principle, the Power PC theory pro-
vides a normative model of causal induction
in the absence of prior domain-specific causal
knowledge that can handle both ceiling ef-
fects and the asymmetry between generative
and preventive causes. It also handles retro-
spective revaluation effects by positing that
subjects calculate causal power over the ap-
propriate “focal set” of cases as specified by
the theory (Cheng & Holyoak 1995).

To be sure, whether or not human causal
intuitions actually conform to the Power PC
model’s predictions for intermediate base-
rate probabilities is a matter of some dispute
(Allan 2003, Buehner et al. 2003, Griffiths
& Tenenbaum 2005, Lober & Shanks 2000,
Perales & Shanks 2003). Worse, at least from
a comparative point of view, there still have
been no experiments testing the Power PC
model’s central predictions about the interac-
tion between �P and base-rate probabilities
on nonhuman subjects. In the absence of such
evidence, it is still too soon for advocates of
the Power PC theory to rest on their laurels.

Do Ceiling Effects Require an
Inferential Explanation?

Regardless of whether or not the Power PC
theory winds up being an appropriate model
of causal induction for human or nonhuman
subjects, the evidence for outcome maximality
and additivity effects suggests that both hu-
man and nonhuman animals are not simply
learning about observable contingencies but
are sensitive to the unobservable constraints
specific to causal inference. Both human and

nonhuman animals appear to understand tac-
itly that covariation only implies causation un-
der special circumstances.

But does ruling out associationist expla-
nations and acknowledging a profound sim-
ilarity between human and nonhuman causal
induction mean that rats necessarily employ
“controlled and effortful inferential reason-
ing processes” and “conscious propositional
knowledge” (Beckers et al. 2006, De Houwer
et al. 2005)?

Beckers et al. (2006) do not present
any computational arguments to justify their
propositional attributions. Instead, they argue
by analogy to human psychology: i.e., in hu-
man causal learning, sensitivity to outcome
additivity and maximality seems to involve
conscious propositional inferences, so nonhu-
man animals who exhibit a similar sensitivity
must be employing similar mental processes
(for an extended critique of this venerable ar-
gument, see Povinelli et al. 2000).

There are numerous reasons to be skep-
tical of this particular analogy. Almost all
of the evidence cited in support of the role
of conscious inferential processes in human
causal cognition has no parallel in nonhuman
studies. For example, Vandorpe et al. (2005)
showed that the “verbal self-reports” of hu-
man subjects are consistent with an inferen-
tial account of blocking; blocking in human
subjects is sensitive to secondary task diffi-
culty (De Houwer & Beckers 2003, Vandorpe
et al. 2005); and verbal information provided
to human subjects after all learning trials
have concluded nevertheless influences block-
ing effects (De Houwer 2002). These results
certainly suggest a role for “controlled and
effortful inferential reasoning” and “propo-
sitional knowledge” in human causal cogni-
tion. But there is no comparable evidence for
nonhuman subjects. Moreover, such verbal
reports in human beings may sometimes be
just posthoc redescriptions of effects initially
generated through implicit nonpropositional
mechanisms (Povinelli et al. 2000). It is worth
noting, in this respect, that Cheng (1997) has
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consistently argued that subjects “implicitly”
use a “qualitative” version of her model.

Beckers et al. (2005) do not present a for-
mal specification of their hypothesis, so it is
difficult to know exactly what they mean when
they claim that outcome maximality and ad-
ditivity effects in rats reflect the operation of
“symbolic causal reasoning processes.” Cer-
tainly, Beckers et al.’s (2005) evidence suggests
that rats are able to manipulate representa-
tions that stand in for objective properties of
stimuli in the world (e.g., the maximum in-
tensity level of a given US) and are able to
compute numeric operations over these values
(e.g., updating the strength of a “blocked” cue
as a function of the actual versus expected out-
come). There are good reasons for believing
that such information-processing operations
require the ability to manipulate symbols and
variables (see Marcus 2001 for a lucid discus-
sion). Indeed, Buehner et al. (2003) make a
similar claim with respect to the Power PC
model. So if this is what Beckers et al. (2005)
mean by “symbolic causal reasoning” pro-
cesses, they seem to be on solid ground.

On the other hand, if what Beckers et al.
(2005) mean by “symbolic causal reason-
ing” is equivalent to the kind of higher-
order propositional inferences they attribute
to humans, their claim is much more ten-
dentious. In other domains—such as for-
aging, spatial cognition, and instrumental
learning—comparative researchers have pro-
posed a variety of information-processing
architectures that could account for the ob-
served outcome maximality and additivity ef-
fects in rats without positing the need for
higher-order inferential reasoning or propo-
sitional representations (e.g., Clayton et al.
2001, Dickinson & Balleine 2000, Gallistel
2003, Shettleworth 1998). Given the species-
specific evidence for conscious higher-order
inferential reasoning in human cue competi-
tion effects (e.g., De Houwer et al. 2005), the
suggestion that “parallel processes” are oper-
ating in humans and rodents (Beckers et al.
2006) appears premature.

INTERVENING ON CAUSAL
STRUCTURES

Causal Bayes Nets

An increasingly influential approach to causal
induction proposes that subjects solve causal
reasoning problems in a manner consistent
with the “causal Bayes net” formalism orig-
inally developed in computer science and
statistics (Pearl 2000, Spirtes et al. 2001). The
mathematical details of the causal Bayes net
approach are far beyond the scope of the
present review (but see Glymour 2003 for a
short, nontechnical introduction). The basic
idea, however, can be expressed easily enough
in nonmathematical terms.

Causal Bayes nets represent causal struc-
tures as directed acyclic graphs in which nodes
represent events or states of the world, and the
connections between nodes (called “edges”)
represent causal relations. Some simple ex-
amples of possible causal structures include
common-cause, common-effect, and causal
chain models (see Figure 1).

The causal Bayes net formalism is predi-
cated on a set of core assumptions. The most
important of these assumptions is the causal
Markov condition. The causal Markov condi-
tion says that if one holds all the direct causes
of a given variable constant, then that variable
will be statistically independent of all other
variables in the causal graph that are not its ef-
fects. For example, in a simple common-cause
model in which two effects occur with a cer-
tain probability given a particular value of C,
the state of the two effects is independent of
each other if the value of C is fixed.

The causal Bayes net formalism places
special importance on the distinction be-
tween interventional and observational pre-
dictions (Danks 2006, Hagmayer et al. 2007,
Pearl 2000, Spirtes et al. 2001, Woodward
2003). Interventions are formally modeled as
an external independent cause that fixes the
value of a given node, thereby “cutting off ”
all other causal influences on that manipu-
lated node. Pearl (2000) has aptly baptized
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X

Y Z Y Z
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Y Z

X

common-effect
model

causal-chain
model

common-cause
model

Figure 1
Three basic causal structures represented as directed acyclic graphs. In a common-cause structure, X is
the common cause of Y and Z. In a causal-chain structure, X influences Y, which influences Z. And in a
common-effect structure, X and Y both influence a common effect, Z.

this procedure “graph surgery.” Causal Bayes
nets provide a formal, computational spec-
ification for how to derive interventional
predictions from observational learning and
vice-versa.

Different versions of the causal Bayes
net approach propose different learning al-
gorithms for inferring the causal structure
underlying a given set of covariation data.
Bottom-up models focus on providing algo-
rithms for inferring causal structures based
on statistical data in the absence of any other
cues (e.g., Gopnik et al. 2004, Spirtes et al.
2001). The “causal model” approach empha-
sizes the role of top-down domain-general as-
sumptions that constrain and inform the in-
duction process (Waldmann 1996, Waldmann
& Hagmayer 2001, Waldmann & Holyoak
1992). The “theory-based” approach focuses
on the influence of domain-specific prior
knowledge (Tenenbaum & Griffiths 2003,
Tenenbaum et al. 2006).

The causal Bayes net formalism is arguably
the most powerful formal account of human
causal inference available today (see, for ex-
ample, Danks 2005, Gopnik et al. 2004, Hag-
mayer et al. 2007, Lagnado et al. 2005, Tenen-
baum & Griffiths 2003). Whether or not it is a
psychologically accurate description of causal
cognition in any nonhuman subject is another
matter.

Intervention Versus Observation
in a Nonhuman Subject

To our knowledge, only a single published ex-
perimental paper has explicitly claimed that
nonhuman animals reason about causal re-
lations in a manner consistent with a causal
Bayes net approach. In the crucial experiment
in this paper, Blaisdell et al. (2006) presented
rats with stimuli whose conditional dependen-
cies purportedly corresponded to one of two
alternative causal structures. Rats presented
with a common-cause model were given pair-
ings of a light, L, followed by a tone, T, and,
then separately, the same light, L, followed by
a food reward, F. Rats presented with a causal-
chain model were given pairings of T followed
by L and then, separately, L followed by F.

During the test phase, each of the two
groups of rats was divided randomly into one
of two test conditions, and a lever that had not
been previously present was inserted into the
test chamber. Rats in condition intervene-T
received a presentation of T each time they
pressed the lever. Rats in condition observe-
T observed presentations of T independently
of their own actions on the lever. The exper-
imenters recorded the number of nose pokes
that the rats made into the magazine where F
had been delivered during the training phase
(there was no actual food in the magazine dur-
ing the test phase).
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The authors found that rats in condition
intervene-T who had witnessed the common-
cause model made fewer nose pokes than
did rats in condition observe-T. In contrast,
there was no significant difference between
the intervene-T and observe-T conditions for
rats in the causal-chain group. Based on these
results, the authors concluded:

Rats made correct inferences for instrumen-
tal actions on the basis of purely obser-
vational learning, and they correctly dif-
ferentiated between common-cause models,
causal-chains and direct causal links. These
results contradict the view that causal learn-
ing in rats is solely driven by associative
learning mechanisms, but they are consis-
tent with causal Bayes net theories. The core
competency of reasoning with causal models
seems to be already in place in animals, even
when elaborate physical knowledge may not
yet be available. (Blaisdell et al. 2006)

Analysis of Blaisdell et al.’s (2006)
Results

We are not surprised that nonhuman causal
induction is consistent with at least some pre-
dictions of a causal Bayes net approach. How
could it not be? The causal Bayes net formal-
ism provides an exceptionally powerful lingua
franca that can give posthoc explanations for
nearly any nonpathological causal inference
(Danks 2006). The question of whether hu-
man or nonhuman learning is consistent with
a causal Bayes net approach is meaningless un-
less one specifies the particular model at stake.
Thus, what is most intriguing about Blaisdell
et al.’s results is the particular assumptions that
one must make in order to claim that the rats’
behavior is consistent with a causal Bayes net
approach.

For example, during the initial training
phase, the rats in the common-cause group
were never presented with L followed by both
T and F as would happen if both cues were
actually effects of a common cause. Instead,
the L → T pairings were perfectly negatively

correlated with the L → F pairings: i.e., ev-
ery instance of L was followed by either L
or T but never both. In other words, rats
purportedly presented with a common-cause
model were, in fact, never shown covariation
information consistent with a common-cause
model. The fact that the rats, nevertheless,
acted as if they had inferred a common-cause
structure should give causal Bayes net enthu-
siasts reason to pause.

Adopting a simple common-cause model
based solely on the observed data would
violate the causal Markov condition since
T and F are not independent conditional
on the state of L. In order for the rats’
behavior to be consistent with the causal
Markov condition, one must posit that the
rats had some sort of prior bias that influ-
enced their causal judgments. One possibil-
ity is that the rats were working under the
tacit assumption that simpler causal struc-
tures (e.g., a simple common-cause model)
are more likely than complex causal structures
(e.g., a common-cause model with inhibitory
edges between effects). Such a prior bias
would be consistent with those causal Bayes
net approaches that allow for the influence of
top-down, domain-general assumptions such
as the causal model approach advocated by
Waldmann and colleagues (Waldmann 1996,
Waldmann & Hagmayer 2001, Waldmann &
Holyoak 1992), but it would not be consistent
with any causal Bayes net account that gener-
ates causal inferences in a purely bottom-up
fashion based solely on observed covariations.
To be sure, while Waldmann and colleagues
have provided extensive evidence in support
of their causal model hypothesis with respect
to human subjects, the evidence for extending
this hypothesis to rats is much more tenuous.

Blaisdell et al.’s (2006) own explanation for
why the rats inferred a common-cause struc-
ture given the anomalous data is not based on
Waldmann et al.’s causal model hypothesis.
Instead, the authors proposed that rats who
have observed L → T pairings and then ob-
serve an L → F pairing “conservatively treat
the absent but expected events [i.e., T] as
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possibly present but missed” (Blaisdell et al.
2006). Given the fact that the T stimulus was
a highly salient tone or noise of 10 seconds in
duration, the claim that the rats assumed they
had somehow “missed” this cue cries out for
further experimental corroboration.

Indeed, Blaisdell et al. (2006) provide very
little evidence that rats inferred a common-
cause model from the data using a causal Bayes
net approach at all. Since the pairings were
deterministic, the only information a sub-
ject could use to distinguish a common-cause
structure from a causal-chain structure was
the temporal ordering of the cues: i.e., T and
F both appeared 10 seconds after L. While
some causal Bayes net theorists have empha-
sized the importance of temporal information
for causal learning (see Lagnado et al. 2005
for an example), the use of temporal informa-
tion to distinguish between alternative causal
structures is certainly not unique to the causal
Bayes net formalism.

This said, the most critical finding in
Blaisdell et al.’s (2006) experiment clearly un-
dermines a traditional associationist account
of the rats’ behavior (see also Clayton &
Dickinson 2006). Rats in the intervene-T con-
dition of the common-cause group were less
interested in F than rats in the observe-T
condition. Blaisdell et al.’s provocative results
challenge any theory of causal cognition that
cannot explain how subjects derive novel in-
terventional predictions from purely observa-
tional learning. But ruling out a traditional as-
sociationist explanation of the rats’ behavior
does not necessarily mean that rats tacitly cog-
nize their own interventions in a human-like
fashion or use the causal Markov condition to
do so.

There is an abundance of evidence demon-
strating that human subjects are able to
use their own interventions in a deliberately
epistemic fashion (Danks 2006; Hagmayer
et al. 2007; Lagnado & Sloman 2002, 2004;
Povinelli & Dunphy-Lelii 2001; Steyvers
et al. 2003; Waldmann & Hagmayer 2005;
Woodward 2003). Steyvers et al. (2003), for
example, showed that human subjects do

not intervene randomly when the number
of interventions they are allowed to make
is constrained; instead, they choose their
interventions in order to provide the most di-
agnostic test of their initial hypotheses. In-
deed, human subjects seem to plan their in-
terventions like quasi-experiments in order
to eliminate confounds and distinguish be-
tween possible causal structures when obser-
vational data alone are ambiguous (Lagnado
et al. 2005).

Blaisdell et al.’s (2006) results are consis-
tent with Pearl’s concept of graph surgery if
one interprets this term as meaning nothing
more than implicitly treating two associated
events as independent once the subject has
intervened on the consequent event (Michael
Waldmann, personal communication). Cru-
cially, however, Blaisdell et al.’s (2006) re-
sults do not provide any evidence that rats
tacitly cognize their own interventions in an
epistemic fashion, are sensitive to the causal
Markov condition, or plan their own interven-
tions in a quasi-experimental fashion to elu-
cidate ambiguous causal relations as human
subjects do. If what the rats did in the results
reported by Blaisdell et al. (2006) counts as
graph surgery, it is graph surgery by an acci-
dental surgeon.

REASONING ABOUT CAUSAL
MECHANISMS

The Role of “Intuitive Theories” in
Human Causal Cognition

All of the theories reviewed to this point
have focused on causal induction and the part
played by domain-general causal assump-
tions. Researchers who focus on the problems
of causal induction—whether from an as-
sociationist, causal power, or causal Bayes
net perspective—have largely tabled any
discussion of domain-specific prior knowl-
edge. Many have explicitly stipulated that the
nettlesome problem is outside the scope of
their models (e.g., Cheng 1997, Dickinson
2001). Even those theorists who argue for the
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importance of top-down knowledge have
largely focused on tightly canalized, domain-
general assumptions rather than learned
domain-specific representations (e.g.,
Lagnado et al. 2005, Waldmann 1996).

Nevertheless, nearly everyone admits that
prior domain-specific knowledge is an inte-
gral aspect of human causal cognition outside
of the laboratory. Human subjects almost al-
ways use their prior domain-specific knowl-
edge to evaluate novel causal relations rather
than bootstrap their way up from observed
covariation information and domain-general
assumptions alone (Tenenbaum & Griffiths
2003, Tenenbaum et al. 2006). Indeed, human
subjects often seek out and prefer information
about underlying mechanisms rather than rely
solely on information about covariation (Ahn
et al. 1995).

Many cognitively minded researchers
claim that human children possess ab-
stract, coherent, rule-governed representa-
tions about the unobservable causal mech-
anisms at work in specific domains such as
physics, biology, and psychology. Some the-
orists argue that this “core knowledge” is
highly canalized due to heritable mecha-
nisms (Carey 1985, Keil 1989, Spelke 1994),
whereas others posit that it is largely learned
on the fly (Gopnik & Meltzoff 1997). In ei-
ther case, it is widely agreed that a child’s
causal knowledge is “theory-like” in the sense
that it provides principled, allocentric, coher-
ent, abstract explanations for the unobserv-
able causal mechanisms that govern a given
domain.

We use the term “intuitive theory” to refer
to a subject’s coherent domain-specific knowl-
edge about unobservable causal mechanisms
(Gopnik & Schulz 2004, Tenenbaum et al.
2006). By “unobservable,” we mean that these
causal mechanisms are based on the struc-
tural or functional relation between objects
rather than on perceptually based exemplars
(cf. Vonk & Povinelli 2006). One of the salient
characteristics of unobservable causal mecha-
nisms, such as gravity and support, is that they
can be generalized freely to disparate concrete

examples that share little to no perceptually
based featural similarity

We have no doubt that intuitive theories
about unobservable causal mechanisms play a
formative role in human causal cognition. In
the remainder of this article, we review the
comparative evidence to ascertain to what ex-
tent this is true of nonhuman animals as well
(see also Povinelli 2000, Vonk & Povinelli
2006).

Nonhuman Animals’ Understanding
of Tools, Support, and Gravity

To date, the strongest positive claims con-
cerning nonhuman animals’ intuitive theo-
ries about the physical world have come from
a series of seminal experiments carried out
by Hauser and colleagues on nonhuman pri-
mates’ understanding of tools (Hauser 1997;
Hauser et al. 1999, 2002a,b; Santos et al. 2003,
2006).

Hauser (1997) showed that adult tamarin
monkeys reliably preferred cane-like tools
whose shape is the same as a previously func-
tional tool to cane-like tools with a novel
shape but familiar color and texture. Based
on these results, Hauser (1997) claimed that
tamarin monkeys can distinguish causally rel-
evant from causally irrelevant properties of
a tool and thus possess a “functional con-
cept of artifacts.” Similar results have been
documented for infant tamarin monkeys with
minimal prior exposure to manipulable ob-
jects (Hauser et al. 2002a) as well as rhesus
macaques, vervet monkeys, and lemurs (see
Hauser & Santos 2006 for a review). Anal-
ogous results have been shown in the do-
main of food (Santos et al. 2001, 2002), where
the sets of relevant and irrelevant features are
reversed.

These results add to the growing body of
evidence that nonhuman animals indeed do
possess evolved domain-specific predisposi-
tions that bias how they perceive and ma-
nipulate objects in the world in the absence
of observed covariation information or direct
instrumental learning (see Shettleworth 1998
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for a review). On the other hand, a heritable
discriminative bias is not the same thing as
an intuitive theory. Nothing in Hauser et al.’s
results suggests that monkeys possess any in-
sight into why one set of features is more
relevant to tools than to food. Nor is there
any evidence that their discriminatory biases
are abstract, allocentric, or theory-like in the
sense attributed to human children. All of
Hauser’s results to date are consistent with a
more modest hypothesis; i.e., nonhuman pri-
mates are predisposed to perceive certain clus-
ters of features as more salient than others
when selecting among potential tools without
understanding anything about the underlying
causal mechanisms involved.

There is not simply an absence of evidence
that nonhuman primates possess an intuitive
theory about tools, there is also consistent
evidence of an absence. Povinelli and col-
leagues have performed an extensive series of
tests on chimpanzees’ understanding of phys-
ical causal mechanisms (see Povinelli 2000).
The general conclusion of these experiments
is that when tool-use tasks are carefully con-
strued to tease apart observable and unobserv-
able relations, chimpanzees consistently focus
solely on the observable relations and fail to
cognize the unobservable causal mechanisms
at stake (see also Vonk & Povinelli 2006).

In one of these experiments, for exam-
ple, Povinelli (2000, Chapter 10) replicated
Piaget’s (1952) cloth-pulling experiment, in
which subjects are asked to pull a piece of
cloth toward them in order to obtain a re-
ward that is lying on the cloth but out of
reach. Hauser et al. (1999) had previously re-
ported that tamarin monkeys successfully dis-
tinguished between rewards lying on or off the
cloth and understood the support relation “at
an abstract level, tolerating all featural trans-
formations.” Povinelli and colleagues, how-
ever, systematically varied the featural cues
available to the chimpanzees and found that
they were only sensitive to certain perceptual
relations—such as the degree of surface con-
tact between the cloth and the reward—and
were insensitive to the actual structural rela-

tion casually relevant to obtaining the reward.
In particular, the chimpanzees appeared to be
oblivious to whether or not the cloth was ac-
tually supporting the reward as opposed to
simply being in contact with it.

A series of seminal experiments by
Visalberghi et al. provides further evidence
for the absence of any intuitive theory among
nonhuman primates about purely abstract
causal mechanisms such as gravity and sup-
port (Limongelli et al. 1995, Visalberghi
et al. 1995, Visalberghi & Limongelli 1994,
Visalberghi & Trinca 1989). For example,
Visalberghi & Limongelli (1994) tested ca-
puchin monkeys’ ability to retrieve a piece of
food placed inside a transparent tube using a
straight stick. In the middle of the tube, there
was a highly visible hole with a small trans-
parent cup attached. If the subject pushed
the food over the hole, the food fell into the
cup and was inaccessible. After about 90 tri-
als, only one out of the four capuchin mon-
keys learned to push the food away from the
hole; and even this one learned the correct
behavior through trial and error. Worse, once
Visalberghi et al. rotated the tube so that the
trap-hole was now facing up and causally irrel-
evant, the only successful capuchin still per-
sisted in treating the hole as if it needed to
be avoided—making it obvious that even this
subject did not understand the causal relation
between the trap hole and the retrieval of the
reward. By way of comparison, it should be
noted that children as young as three years
of age successfully solve the trap-tube task
after only a few trials (Visalberghi &
Tomasello 1998).

Povinelli (2000, Chapter 4) replicated
Visalberghi’s trap-tube setup with seven
chimpanzees. Only a single chimp performed
above chance on the normal trap tube condi-
tion. When tested on the inverted trap con-
dition, this chimp—like the single successful
capuchin in Visalberghi’s original
experiment—failed to take the position
of the trap into account. More recently still,
Santos et al. (2006) has replicated many of
Povinelli’s (2000) experiments with tamarin
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and vervet monkeys and found convergent
results. Based on these experiments, Santos
et al. (2006) now conclude that nonhuman
primates’ comprehension of tools “is more
limited than previously stated.”

The failure to understand unobservable
causal mechanisms such as support and gravity
in an abstract fashion is not limited to nonhu-
man primates. Seed et al. (2006) recently pre-
sented eight rooks, a species of corvid, with
a clever modification to the traditional trap-
tube task. Seven out of eight rooks learned the
initial version of the modified trap-tube task
quite rapidly. Nevertheless, when presented
with a series of transfer tasks in which the vi-
sual cues that predicted success in the initial
task were absent or confounded, only one of
the seven subjects passed. In a separate follow-
up experiment (Tebbich et al. 2006), none of
the rooks passed the transfer task.

Seed et al.’s (2006) results add to the grow-
ing evidence that corvids are quite adept at us-
ing stick-like tools, perhaps even more adept
than nonhuman primates (see, for example,
Chappell & Kacelnik 2002, 2004; Weir et al.
2002). But as Seed et al. (2006) point out, these
results also suggest that rooks, like nonhuman
primates, do not have a species-universal un-
derstanding of “unobservable causal proper-
ties” like gravity and support. Instead, they ap-
pear to solve tool-use problems based on the
observable features of the task and evolved,
task-specific expectations about what features
are likely to be most salient (see also Chappell
2006 on the importance of interindividual
differences).

The Case for Diagnostic Causal
Reasoning in Nonhuman Apes

Until recently, there has been a consensus that
nonhuman animals do not seek out diagnostic
causal explanations (Povinelli 2000, Povinelli
& Dunphy-Lelii 2001, Premack & Premack
1994, Visalberghi & Tomasello 1998). Break-
ing with this comparative consensus, Call
(2004, 2005) has recently argued that non-
human apes are, in fact, quite good at seek-

ing out diagnostic causal explanations based
on “causal-logical relations” and “quite bad at
associating arbitrary stimuli and responses.”
These tendentious claims are based on a set
of experiments testing apes’ inferences about
the location of food (Call 2004).

In these experiments, Call (2004) pre-
sented 4 bonobos, 12 chimpanzees, 6
orangutans, and 8 gorillas with two opaque
cups, one of which was baited with a food
reward. In the first experiment, the experi-
menter either showed the contents of both
cups to the subjects or shook both of the
cups. Unsurprisingly, subjects strongly pre-
ferred the cup in which they had seen the re-
ward. Of the 27 original subjects, 9 also pre-
ferred the cup in which the shaking motion
was associated with a noise.

In the second experiment, the 9 success-
ful subjects from experiment 1 were retested
in a condition in which only one of the two
cups was shaken. In some trials, the baited cup
was shaken; in other trials, the empty cup was
shaken. Out of the 9 subjects, 3 were above
chance on the crucial condition in which only
the empty cup was shaken and the ape had to
infer “by exclusion” that the food was in the
other cup.

In subsequent experiments, Call (2004)
tested a number of arbitrary noises (such as
tapping on the cup or playing the recorded
sound of a shaking noise) against the ac-
tual noise produced by shaking the cup. The
apes chose the baited cup more frequently on
“causal” conditions than on “arbitrary” ones.
Based on this evidence, Call (2004) argued
that the apes had understood the “causal-
logical relation between the cup movement,
the food, and the auditory cue” and under-
stood that “the food causes the noise.”

There are numerous problems with Call’s
interpretation. We do not know enough about
the learning history of the subjects involved in
these experiments to rule out the alternative
hypothesis that they were simply responding
on the basis of previously learned contingen-
cies. It seems quite plausible, for example, that
these captive apes had previously learned that
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a shaking noise (N) combined with a shak-
ing motion (M) is jointly indicative of a re-
ward (NM+), whereas a shaking noise with-
out a shaking motion (N-) or a shaking motion
without a shaking noise (M-) is not. Positive
patterning of this kind is a well-documented
phenomenon in the animal conditioning lit-
erature (see Wasserman & Miller 1997 for a
discussion). None of Call’s numerous manip-
ulations ruled out this obvious alternative hy-
pothesis. As we discussed above, there is ample
evidence that nonhuman animals often reason
about causal relations in a fashion that is in-
explicable in associationist terms. Ironically,
though, a quite traditional associative expla-
nation suffices in this particular case.

Indeed, Call’s (2004) claim that the apes
understood the contingencies in a “causal-
logical” fashion appears to be refuted by Call’s
own results. In experiment 3, Call presented
the apes with an empty “shaken silent cup”
and an empty “rotated silent cup” (i.e., turned
upside down and then right side up again). In
experiments 1 and 2, the same shaking motion
produced an audible rattling noise when the
cup contained food. Nevertheless, the sub-
jects strongly preferred the silent shaken cup
to the silent rotated cup. If the apes had in
fact understood the causal-logical relation-
ship involved, they would have inferred that
neither cup contained food and would have
chosen randomly between the two cups or,
if anything, would have preferred the rotated
cup. Call provides no “causal-logical” expla-
nation for why the apes would strongly pre-
fer a shaken silent cup to a rotated silent cup.
Once again, an explanation based on simple
associative conditioning seems to fit the bill.

CONCLUSIONS, PROBLEMS,
SUGGESTIONS

We hope that the comparative evidence we
have reviewed over the course of this ar-
ticle has demonstrated why the venerable
dichotomy between associationist and infer-
ential explanations of nonhuman causal cog-
nition is both specious and unproductive. We

agree with Chappell (2006): The real situation
seems to be much more complicated, multi-
farious, and fascinating.

Many aspects of both human and nonhu-
man causal learning are parsimoniously ex-
plained in terms of some form of associative
conditioning. On the other hand, both hu-
man and nonhuman animals are also sensi-
tive to constraints specific to causal relations
sensu strictu—such as ceiling effects and the
asymmetry between generative and preven-
tive causes. This implies that causal induc-
tion is not simply reducible to contingency
learning in either human or nonhuman sub-
jects. Even nonhuman animals employ cog-
nitive mechanisms that distinguish between
causality and covariation.

With respect to nonhuman animals’ un-
derstanding of their own instrumental ac-
tions, the evidence again suggests that nonhu-
man causal cognition lies somewhere outside
the associationist and inferential alternatives.
On the one hand, nonhuman animals’ capac-
ity for flexible goal-directed actions suggests
that they explicitly represent the causal rela-
tion between their own action and its conse-
quences as well as the value of the expected
outcome (see Dickinson & Balleine 2000).
Moreover, Blaisdell et al.’s (2006) provoca-
tive results suggest that rats tacitly differen-
tiate between the consequences of interven-
tions on different kinds of causal structures.
On the other hand, there is still no convincing
evidence that nonhuman animals of any taxa
seek out diagnostic explanations of anomalous
causal relations or deliberately use their own
interventions in order to elucidate ambiguous
causal dependencies. For the moment, such
diagnostic, inferential reasoning abilities ap-
pear to be uniquely human.

Most importantly, there appears to be a
fundamental discontinuity between human
and nonhuman animals when it comes to
cognizing the unobservable causal mecha-
nisms underlying a given task or state of
affairs. While many species (including hu-
mans) have a tacit understanding that some
events have the unobservable “power” to
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cause other events (Cheng 1997), nonhuman
animals’ causal beliefs appear to be largely
content-free; that is, their causal beliefs do
not incorporate an abstract representation
of the underlying generative mechanisms in-
volved (Dickinson & Balleine 2000). Reason-
ing about the unobservable causal-logical re-
lation between one particular causal belief and
another appears to be a uniquely human trait.

This is not to say that all nonhuman an-
imals are uniform in their cognitive abili-
ties or that human subjects always reason
in abstract, inferential terms. Evolution has
clearly sculpted cognitive architectures to
serve specific functions in specific species
(Shettleworth 1998). The remarkable tool-
using abilities of corvids stand as a stark re-
minder that the humanist notion of a scala
naturae in causal cognition is wishful thinking.
Our hypothesis is simply that in the panoply of
animal cognition, the ability to reason about
unobservable, domain-specific causal mecha-
nisms in a causal-logical fashion is a specifi-
cally human specialization (see also Povinelli
2000, 2004; Vonk & Povinelli 2006).

Why is it that only human animals are
able to acquire and use representations about
unobservable causal mechanisms? Unfortu-
nately, answering this comparative explanan-
dum is hampered by the fact that our un-
derstanding of how intuitive theories work in
human subjects is inchoate at best.

Causal Bayes net models are often touted
as the way to reconcile bottom-up causal
induction and top-down causal knowledge
(Danks 2005, Gopnik et al. 2004, Gopnik &
Schulz 2004). Upon closer inspection, how-
ever, it is clear that causal Bayes nets are not up
to the task. As Tenenbaum et al. (2006) point
out, any formal specification of intuitive causal
theories of human causal cognition must be
able to account for the hierarchical coherence
among causal relations at various levels of ab-
straction. Lien & Cheng (2000), for example,
showed that human subjects are more likely to
judge a candidate cause to be genuinely causal
if it is “hierarchically consistent” with their
prior knowledge about superordinate causal

relations. Unfortunately, the edges and nodes
of the causal Bayes net formalism are not “suf-
ficiently expressive” to evaluate what makes a
given concrete causal relation more or less co-
herent with superordinate mechanisms at dif-
ferent levels of abstraction (Tenenbaum et al.
2006).

In the absence of any well-established for-
mal account of intuitive theories in human
causal cognition, it is well nigh impossible to
give a formal explanation for the discontinu-
ity between human and nonhuman abilities in
this area. Nevertheless, in the interests of pro-
voking future research and debate, we close by
proposing a preliminary hypothesis.

Our hypothesis is that abstract causal
reasoning—i.e., causal cognition that involves
reasoning about the relation between causal
predicates at various levels of generality—is
intimately bound up with the dynamics of
analogical reasoning. It is well known that
human subjects often learn about novel and
unobservable causal relations by analogy to
known and/or observable ones: The structure
of the atom, for example, is often described
by analogy to the solar system; electricity is
conceived of as analogous to a flowing liq-
uid; gravity is like a physical force. As Lien &
Cheng (2000) suggest, the process of acquir-
ing and predicating abstract causal relations
seems akin to analogical inference; i.e., novel
causal relations are often learned “by analogy”
to known superordinate relations, and su-
perordinate causal schemas are often learned
by systematically abstracting out the func-
tional elements common to superficially dis-
parate causal regularities. If this hypothesis is
right, computational models of analogical in-
ference may provide the missing link between
bottom-up and top-down processes in human
causal cognition (French 2002, Gentner et al.
2001, Holyoak & Thagard 1997).

Our hypothesis provides a computational
explanation for why human and nonhuman
abilities differ so dramatically when it comes
to reasoning about unobservable and ab-
stract causal mechanisms. With the excep-
tion of a single unreplicated experiment on
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one language-trained chimp (i.e., Gillan et al.
1981), there is no evidence that any nonhu-
man animal is capable of analogical reasoning.
Ex hypothesi, the reason why only human sub-

jects can reason about unobservable domain-
specific causal mechanisms is because only hu-
mans have the representational architecture
necessary to reason by analogy.

SUMMARY POINTS

1. The evidence suggests that nonhuman causal cognition is significantly more sophis-
ticated than can be accounted for by traditional associationist theories. In particular,
both human and nonhuman animals do not simply learn about observable contin-
gencies; they appear to be sensitive to the unobservable constraints specific to causal
inference.

2. On the other hand, there is a lack of compelling evidence that nonhuman animals
pursue diagnostic explanations of anomalous causal relations or deliberately use their
own interventions in order to elucidate ambiguous causal dependencies.

3. Nonhuman animals do not appear capable of the kinds of causal-logical inferences
employed by human subjects when reasoning about abstract causal relations.

4. Nonhuman casual cognition is not well served by either the traditional associationist
or classically inferential alternatives that have dominated comparative debate for many
decades.

FUTURE ISSUES

1. Can the new generation of associationist models—such as the extended comparator
hypothesis—account for the richness of nonhuman causal cognition without giving
up the representational-level parsimony that has been the hallmark of traditional
associationist theory?

2. Can advocates of a higher-order inferential account of causal cognition provide a
formal, computational specification of their claims?

3. Are nonhuman animals sensitive to the effects of intermediate base-rate probabilities
as predicted by the Power PC theory?

4. To what extent can nonhuman animals use their own interventions in a deliberately
diagnostic manner? For example, can they use their interventions to elucidate am-
biguous causal structures?

5. Can nonhuman animals infer the presence of hidden and/or unobservable causes? Are
causal Bayes nets a useful formalism for describing the cognitive processes responsible
for nonhuman causal cognition?

6. What representational-level limitations account for the inability of nonhuman animals
to reason about unobservable causal relations?

7. What is the computational role of analogical inference in human causal cognition?
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